Tim Bonner Texas State University Department of Biology

TBonner@txstate.edu

GSA BBEST & Brazos River BBEST

COWPOKES®

By Ace Reid

Problem: Truck will not start

- Approach 1 (Beginner's approach)
 - Attempt to understand structure and function
 - Dismantle and understand engine, transmission, structural design
 - Discover purpose of bumper, lights, seatbelt

*All very useful information, but it is not the most efficient route to starting and using the truck

Approach 2 (An Amateur's Approach)

^{*}A more direct route to solving the problem

GSA Work Plan

- The "problem": Developing a work plan
 - Establish a periodic review
 - Prescribe specific monitoring, studies, and activities (for what purpose?)
 - ...for continuing the validation or refinement of the eflow regime recommendation

Approach 1

- Attempt to understand structure and function of the basin and bays
- Reduce into small parts to understand how each component works
- Discover new information about stream fish, mussels, oysters, and blue crabs
- *All very useful information, but it is not the most efficient route to "validating and refining e-flow recommendations".

• Approach 2

Table 4.1-15. GSA BBASC Environmental Flow Regime Recommendation - Guadalupe River at Cuero⁴⁹

Overbank Flows	Qp: 45,400 cfs with Average Frequency 1 per 5 years Regressed Volume is 869,000 Duration Bound is 91											
	Qp: 24,700 cfs with Average Frequency 1 per 2 years Regressed Volume is 406,000 Duration Bound is 64											
	Qp: 16,600 cfs with Average Frequency 1 per year Regressed Volume is 247,000 Duration Bound is 50											
High Flow	Qp: 4,610 cfs with Average Frequency 1 per season Regressed Volume is 55,300 Duration Bound is 26			Qp: 8,870 cfs with Average Frequency 1 per season Regressed Volume is 110,000 Duration Bound is 32			Qp: 2,110 cfs with Average Frequency 1 per season			Qp: 5,200 cfs with Average Frequency 1 per season Regressed Volume is 54,700 Duration Bound is 23		
Pulses	Freque Regresse	ncy 2 per	season is 14,100	Qp: 3,370 cfs with Average Frequency 2 per season Regressed Volume is 31,800 Duration Bound is 18			Frequency 2 per season			Qp: 1,730 cfs with Average Frequency 2 per season Regressed Volume is 14,100 Duration Bound is 13		
Base Flows (cfs)	980			940 680 410			800 600 390			870		
Subsistence Flows (cfs)	130			120			130			86		
	Jan	Feb Winter	Mar	Apr	May Spring	Jun	Jul	Aug Summer	Sep	Oct	Nov Fall	Dec

^{*}A more direct route to solving the problem

E-Flow Regime Recommendations

- Each number (i.e., 130 cfs for subsistence flows) represents a hypothesis (prediction).
- Prediction: Subsistence flows (130 cfs; median of the lowest 10% of base flows) are sufficient to provide aquatic habitat, longitudinal connectivity, dissolved oxygen, and temperature
- Validate/test this prediction (and all others), then refine with new knowledge

Table 4.1-15. GSA BBASC Environmental Flow Regime Recommendation - Guadalupe River at Cuero⁴⁹

	Qp: 45,400 cfs with Average Frequency 1 per 5 years Regressed Volume is 869,000 Duration Bound is 91 Qp: 24,700 cfs with Average Frequency 1 per 2 years											
Overbank Flows	Regressed Volume is 406,000 Duration Bound is 64											
	Qp: 16,600 cfs with Average Frequency 1 per year Regressed Volume is 247,000 Duration Bound is 50											
High Flow	Qp: 4,610 cfs with Frequency 1 per : Regressed Volume is Duration Bound :	<pre>Qp: 8,870 cfs with Average Frequency 1 per season Regressed Volume is</pre>			Qp: 2,110 cfs with Average Frequency 1 per season			Qp: 5,200 cfs with Average Frequency 1 per season Regressed Volume is 54,700 Duration Bound is 23				
Pulses	Qp: 1,610 cfs with Frequency 2 per : Regressed Volume i: Duration Bound :	season s 14,100	Freque	ncy 2 per	season is 31,800	Frequen	ncy 2 per	season is 8,300	Regressed	ocfs with ncy 2 per d Volume i ion Bound	season s 14,100	
Base Flows (cfs)	980	940 680 410			800 600 390			870				
Subsistence Flows (cfs)	130	120			130			86				
	Jan Feb Winter	Apr May Jun Spring		Jul Aug Sep Summer		Oct	Nov Fall	Dec				

Review

- E-flow recommendations will maintain a sound ecological environment
- Subsistence flow (130 cfs) is sufficient to maintain water quality (Dissolved Oxygen is just one parameter)
- Options:
 - 1. Reject and adjust (refinement)
 - 2. Can't reject the prediction (validation)

...for continuing the validation or refinement of the e-flow regime recommendation

Table 4.1-15. GSA BBASC Environmental Flow Regime Recommendation - Guadalupe River at Cuero⁴⁹

Overbank	Qp: 45,400 cfs with Average Frequency 1 per 5 years Regressed Volume is 869,000 Duration Bound is 91 Qp: 24,700 cfs with Average Frequency 1 per 2 years												
Flows	Regressed Volume is 406,000 Duration Bound is 64												
	Qp: 16,600 cfs with Average Frequency 1 per year Regressed Volume is 247,000 Duration Bound is 50												
High Flow	Qp: 4,610 cfs with Average Frequency 1 per season Regressed Volume is 55,300 Duration Bound is 26			Qp: 8,870 cfs with Average Frequency 1 per season Regressed Volume is 110,000 Duration Bound is 32			Qp: 2,110 cfs with Average Frequency 1 per season			Qp: 5,200 cfs with Average Frequency 1 per season Regressed Volume is 54,700 Duration Bound is 23			
Pulses	Frequency 2 per season			Qp: 3,370 cfs with Average Frequency 2 per season Regressed Volume is 31,800 Duration Bound is 18			Frequency 2 per season			Frequency 2 per season			
Base Flows (cfs)	980			940 680 410			800 600 390			870			
Subsistence Flows (cfs)		130			120			130			86		
	Jan Feb Mar Winter			Apr May Jun Spring			Jul Aug Sep Summer			Oct	Nov Fall	Dec	

- SB2/TIFP on Guadalupe
 - Output: a set of e-flow recommendations, <u>similar</u> to BBASC/BBEST numbers
 - SB 2, like BBASC, is a hypothesis generating exercise.
 - SB 2 still needs validation (hypothesis testing exercise).
 - Which is better? Do not know until numbers are validated
 - Not a refinement or validation of E-flow recommendation

- Streamflow Gaging and Synoptic Flow Study
 - Output: increase monitoring capabilities
 - Adequate infrastructure is necessary but not a refinement or validation of E-flow recommendation
 - Request additional needs to assist with refinement and validation.

Rangia Clam Investigations

Output: quantify reproduction, distribution, and abundances

– Approach 1?

Convert to Approach 2.

Rangia Clam Investigations

Output: quantify reproduction, distribution, and abundances

– Approach 1?

 Convert to Approach: quantify reproduction, distribution, and abundances relative to E-Flows

BBASC Tier 1 Work Plan Recommendations

Priority	Pg#	Study Name	Notes
1	10	Instream Flows - SB2 TIFP Guadalupe Study	
2		Instream Flows - Streamflow Gaging and Synoptic Flow Study	
2a	13	USGS Streamflow Gaging and Water Quality Monitoring	The gage location below Victoria is dependent upon the
2b	15	Synoptic Flow Measurements to Estimate Freshwater Inflow and Applicability of Lower River Gaging Stations	Synoptic Flow Study (2b)
3	16	Bays & Estuaries - Rangia Clam Investigations	
4		Bays & Estuaries - Life Cycle Habitat & Salinity Studies for Key Faunal Species	
5	l .	Bays & Estuaries - Hydrodynamic & Salinity Model Improvements	Hydrodynamic & Salinity Model Improvements Study is dependent upon Synoptic Flow Study (2b)
6	20	Instream Flows - Full Accounting of Surface Water	

BBASC Tier 2 Work Plan Recommendations

*Disclaimer: Studies listed are grouped by type of study, not in any prioritized order

Pį	#
	3 Instream Flows - Riparian Assessment and Monitoring
	5 Instream Flows - Biological Sampling and Monitoring
	7 Instream Flows - Geomorphic Studies and Monitoring
	Bays & Estuaries - The Distribution and Abundance of Marsh Vegetation in Relation to Salinity and Elevation in
	1 the Guadalupe Estuary Delta
	Bays & Estuaries - Habitat Suitability Models for Eastern Oysters, Blue Crabs & White Shrimp
	Bays & Estuaries - Development of an Inundation and Salinity Model of the Guadalupe Estuary Lower Delta and
	4 Adjacent Bays

BBASC Tier 3 Work Plan Recommendations

*Disclaimer: Studies listed are grouped by type of study, not in any prioritized order

Pg#	
36	Instream Flows - Groundwater Studies
38	Instream Flows - Water Quality Monitoring
41	Instream Flows - Invasives
42	Bays & Estuaries - Nutrient Load & Concentration Monitoring
43	Bays & Estuaries - Role of Cedar Bayou in the Exchange of Water and Meroplankton to the Guadalupe Estuary
44	Bays & Estuaries - Evaluation of Sediment Transport Affecting the Guadalupe Estuary Delta
46	Bays & Estuaries - Sea Level Rise Associated with Climate Change

